Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11426, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794129

RESUMO

Persulfidation contributes to a group of redox post-translational modifications (PTMs), which arise exclusively on the sulfhydryl group of cysteine as a result of hydrogen sulfide (H2S) action. Redox-active molecules, including H2S, contribute to sperm development; therefore, redox PTMs represent an extremely important signalling pathway in sperm life. In this path, persulfidation prevents protein damage caused by irreversible cysteine hyperoxidation and thus maintains this signalling pathway. In our study, we detected both H2S and its production by all H2S-releasing enzymes (cystathionine γ-lyase (CTH), cystathionine ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MPST)) in male reproduction, including spermatozoa. We provided evidence that sperm H2S leads to persulfidation of proteins, such as glyceraldehyde-3-phosphate dehydrogenase, tubulin, and anchor protein A-kinase. Overall, this study suggests that persulfidation, as a part of the redox signalling pathway, is tightly regulated by enzymatic H2S production and is required for sperm viability.


Assuntos
Sulfeto de Hidrogênio , Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Masculino , Reprodução , Sêmen/metabolismo
2.
Reprod Domest Anim ; 57 Suppl 5: 72-77, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35668641

RESUMO

Deficient sperm motility is a frequent cause of the age-related male sub-/infertility. Since the protein sirtuin 1 (SIRT1) develops anti-aging action and participates in sperm motility and ATP synthesis in mitochondria, we investigated its role in the acquisition of hyperactivated motility during capacitation. For this, the dynamics of sperm subpopulations were studied, using males of Sirt1+/- heterozygous mutant mice. After 2 hr of capacitation, we observed reduced percentage of hyperactivated spermatozoa in Sirt1+/- males. Interestingly, prior to capacitation, Sirt1+/- spermatozoa showed higher mitochondrial superoxide levels, which could render mitochondrial injury and thereby motility defects. Accordingly, the fertilization rate of Sirt1+/- males after mating was decreased. We elucidated that SIRT1 male insufficiency underlies posterior sperm defects to hyperactivate during capacitation and propose Sirt1+/- males as a model for the study of the age-related infertility.


Assuntos
Infertilidade Masculina , Doenças dos Roedores , Trifosfato de Adenosina/metabolismo , Animais , Fertilização/fisiologia , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/veterinária , Masculino , Camundongos , Doenças dos Roedores/metabolismo , Sêmen , Sirtuína 1/genética , Sirtuína 1/metabolismo , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Superóxidos
3.
Front Physiol ; 13: 725442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283775

RESUMO

Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.

4.
Reprod Biol Endocrinol ; 18(1): 56, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466766

RESUMO

BACKGROUND: Bisphenol S (BPS) is increasingly used as a replacement for bisphenol A in the manufacture of products containing polycarbonates and epoxy resins. However, further studies of BPS exposure are needed for the assessment of health risks to humans. In this study we assessed the potential harmfulness of low-dose BPS on reproduction in male mice. METHODS: To simulate human exposure under experimental conditions, 8-week-old outbred ICR male mice received 8 weeks of drinking water containing a broad range of BPS doses [0.001, 1.0, or 100 µg/kg body weight (bw)/day, BPS1-3] or vehicle control. Mice were sacrificed and testicular tissue taken for histological analysis and protein identification by nano-liquid chromatography/mass spectrometry (MS) and sperm collected for immunodetection of acetylated lysine and phosphorylated tyrosine followed by protein characterisation using matrix-assisted laser desorption ionisation time-of-flight MS (MALDI-TOF MS). RESULTS: The results indicate that compared to vehicle, 100 µg/kg/day exposure (BPS3) leads to 1) significant histopathology in testicular tissue; and, 2) higher levels of the histone protein γH2AX, a reliable marker of DNA damage. There were fewer mature spermatozoa in the germ layer in the experimental group treated with 1 µg/kg bw (BPS2). Finally, western blot and MALDI-TOF MS studies showed significant alterations in the sperm acetylome and phosphorylome in mice treated with the lowest exposure (0.001 µg/kg/day; BPS1), although the dose is several times lower than what has been published so far. CONCLUSIONS: In summary, this range of qualitative and quantitative findings in young male mice raise the possibility that very low doses of BPS may impair mammalian reproduction through epigenetic modifications of sperm proteins.


Assuntos
Dano ao DNA/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Fenóis/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Maturação do Esperma/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Sulfonas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Epigênese Genética , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia
5.
Syst Biol Reprod Med ; 66(1): 3-11, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31580744

RESUMO

Chromatin remodeling, including histone post-translational modifications, during spermatogenesis can affect sperm quality and fertility, and epigenetic marks may therefore be useful for clinical evaluations of sperm. Together with histone hyperacetylation, the dimethylation of histone H3 on lysine K4 (H3K4me2) is also required during protamination. Accordingly, we evaluated the utilization of this epigenetic mark for the identification of sperm with decrease quality and immature chromatin. In this study, 99 semen samples, including 22 normozoospermic (N), 63 asthenozoospermic (A), and 14 oligoasthenozoospermic (OA) samples, were comprehensively analyzed with respect to H3K4me2 levels, DNA damage (DNA fragmentation index, DFI), and sperm immaturity (high DNA stainability, %HDS), as determined by a sperm chromatin structure assay using flow cytometry. We detected a significant relationship between H3K4me2 and %HDS (r = 0.47; p < 0.001). Furthermore, we observed negative correlations between H3K4me2 and sperm concentration, motility, and mitochondrial activity (p < 0.05). The increase in immaturity as semen quality decreased (N > A > OA) indicates the importance of chromatin immaturity and histone code deviations in sperm evaluations. Using various approaches, our study elucidated H3K4me2 as a molecular marker of sperm quality with potential use in reproductive medicine.Abbreviations: A: asthenozoospermic; AO: acridine orange; ART: assisted reproductive therapy; BWW: Biggers-Whitten Whittingham; DAPI: 4',6' -diamidino-2-phenylindole; DFI: DNA fragmentation index; H3K4me2: dimethylation of lysine K4 on histones H3; HDS: high DNA stainability; HRP: horseradish peroxidase; MACS: magnetic-activated cell sorting; N: normospermic; NGS: normal goat serum; OA: oligoasthenozoospermic; PTM: post-translational modification; SCSA: sperm chromatin structure assay; SUTI: sperm ubiquitin tag assay; TBS-T: TBS with 0.5% Tween-20.


Assuntos
Montagem e Desmontagem da Cromatina , Código das Histonas , Histonas/metabolismo , Espermatozoides/metabolismo , Adulto , Astenozoospermia/metabolismo , Biomarcadores/metabolismo , Humanos , Masculino , Metilação , Oligospermia/metabolismo , Análise do Sêmen
6.
Reprod Toxicol ; 93: 19-27, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31881267

RESUMO

Bisphenol S (BPS) is widely used to replace the known endocrine disruptor BPA in various products. We evaluated the effect of acute in vivo BPS exposure on oocyte quality, simulating the oral route of exposure via oral gavage. Eight-week-old ICR female mice (N = 15 per experimental group) were exposed to vehicle or BPS1-BPS4 (0.001, 0.1, 10, and 100 ng BPS x g bw-1 day-1, respectively) for seven days. Oocytes were isolated and matured in vitro. We observed that BPS exposure increased aberrant spindle formation in mature oocytes and induced DNA damage. Moreover, BPS3 significantly increased the chromatin repressive marks 5-methyl cytosine (5meC) and H3K27me2 in immature oocytes. In the BPS2 group, the increase in 5meC occurred during oocyte maturation. Transcriptome analysis revealed differential expression of early embryonic development transcripts in BPS2-exposed oocytes. These findings indicate that the biological effect of BPS is non-monotonic, affecting oocyte quality even at concentrations that are orders of magnitude below those measured in humans.


Assuntos
Oócitos/efeitos dos fármacos , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Dano ao DNA , Metilação de DNA/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos Endogâmicos ICR , Oócitos/metabolismo , Gravidez
7.
J Anim Sci Biotechnol ; 10: 67, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413827

RESUMO

BACKGROUND: SIRT1 histone deacetylase acts on many epigenetic and non-epigenetic targets. It is thought that SIRT1 is involved in oocyte maturation; therefore, the importance of the ooplasmic SIRT1 pool for the further fate of mature oocytes has been strongly suggested. We hypothesised that SIRT1 plays the role of a signalling molecule in mature oocytes through selected epigenetic and non-epigenetic regulation. RESULTS: We observed SIRT1 re-localisation in mature oocytes and its association with spindle microtubules. In mature oocytes, SIRT1 distribution shows a spindle-like pattern, and spindle-specific SIRT1 action decreases α-tubulin acetylation. Based on the observation of the histone code in immature and mature oocytes, we suggest that SIRT1 is mostly predestined for an epigenetic mode of action in the germinal vesicles (GVs) of immature oocytes. Accordingly, BML-278-driven trimethylation of lysine K9 in histone H3 in mature oocytes is considered to be a result of GV epigenetic transformation. CONCLUSIONS: Taken together, our observations point out the dual spatiotemporal SIRT1 action in oocytes, which can be readily switched from the epigenetic to non-epigenetic mode of action depending on the progress of meiosis.

8.
Reproduction ; 156(1): 47-57, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748175

RESUMO

Bisphenols belong to the endocrine disruptors, affecting reproduction even in extremely low doses. Bisphenol S (BPS) has become widely used as a substitute for the earlier-used bisphenol A; however, its harmlessness is questionable. The aim of this study was to evaluate the effect of BPS on folliculogenesis and oocyte quality after in vivo exposure to low doses of BPS. Four-week-old ICR females (n = 16 in each experimental group) were exposed to vehicle control (VC), BPS1 (0.001 ng BPS.g/bw/day), BPS2 (0.1 ng.g/bw/day), BPS3 (10 ng.g/bw/day) and BPS4 (100 ng.g/bw/day) for 4 weeks. Ovaries were subjected to stereology and nano liquid chromatography-mass spectrometry (LC/MS). Simultaneously, metaphase II oocytes were obtained after pregnant mare serum gonadotrophin and human chorionic gonadotrophin administration, followed by immunostaining. In particular, mating and two-cell embryo flushing were performed. We observed that BPS decreases the amount of ovarian follicles and BPS2 (0.1 ng.g/bw/day) affects the volume of antral follicles. Accordingly, ovarian proteome is affected after BPS2 treatment. While BPS2 dosing results mainly in cytoskeletal damage in matured oocytes, the effects of BPS3 and BPS4 seem to be due instead to epigenetic alterations in oocytes. Arguably, these changes lead to observed affection of in vivo fertilization rate after BPS3 and BPS4 treatment. BPS significantly affects female reproduction astoundingly in extremely low doses. These findings underline the necessity to assess the risk of ongoing BPS exposure for public health.


Assuntos
Disruptores Endócrinos/administração & dosagem , Ovário/efeitos dos fármacos , Fenóis/administração & dosagem , Reprodução/efeitos dos fármacos , Sulfonas/administração & dosagem , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Fertilização/efeitos dos fármacos , Gonadotropinas Equinas/farmacologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovário/metabolismo , Proteoma/efeitos dos fármacos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...